1 This is a question about entropy changes.

Consider the reaction between the two solids, hydrated barium hydroxide and ammonium chloride. When these substances are mixed together, a white paste is formed and the temperature decreases. An equation for this process is given below.

$$Ba(OH)_2.8H_2O(s) + 2NH_4CI(s) \rightarrow 2NH_3(g) + 10H_2O(I) + BaCI_2(s)$$

(a) (i) Identify **one** hazard associated with a named substance in this reaction.

(1)

(ii) Use the standard molar entropies below to calculate the standard entropy change of the system ($\Delta S_{\text{system}}^{\ominus}$) for this reaction at 298 K. Give a sign and units with your answer.

Compound	S [⊕] / J mol ⁻¹ K ⁻¹
Ba(OH) ₂ .8H ₂ O(s)	427
NH₄CI(s)	95
NH₃(g)	192
H ₂ O(I)	70
BaCl ₂ (s)	124

(3)

*(iii) Give two reasons why the sign of your answer to (a)(ii) is as you would expe	ct. (2)
(b) The standard enthalpy change for this reaction is $\Delta H_r^{\ominus} = +162 \text{ kJ mol}^{-1}$. Use this value to calculate the standard entropy change of the surroundings $(\Delta S_{\text{surroundings}}^{\ominus})$ for this reaction at 298 K. Include a sign and units in your answer.	(2)
	(=)
(c) Use your answers to (a)(ii) and (b) to calculate the total entropy change ($\Delta S_{\text{total}}^{\ominus}$) this reaction. Include a sign and units in your answer.	for (1)
(d) What would be the effect, if any, on the value of $\Delta S_{\text{total}}^{\ominus}$ from (c) of a small increas in temperature? Justify your answer and state any assumptions that you have made.	e (3)

(e)	The values of total entropy change and equilibrium constant of a reaction are related by the following equation.	
	$\Delta S_{\text{total}} = R \text{In} K$	
	The equation for the dissolving of barium hydroxide is	
	$Ba(OH)_2(s) + aq \implies Ba^{2+}(aq) + 2OH^{-}(aq)$ $\Delta S_{total}^{\ominus} = -44 \text{ J mol}^{-1} \text{ K}^{-1}$	
	(i) Calculate the value of the equilibrium constant, <i>K</i> , for this equation at 298 K.	
	$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$	
		(1)
	(ii) What does the value of the equilibrium constant suggest about the solubility of barium hydroxide?	
	Justify your answer.	
		(1)
	(iii) For the dissolving of calcium hydroxide, the value of the total entropy change is $-106~\rm J~mol^{-1}~K^{-1}$	
	Compare the values of the total entropy changes for these two hydroxides and show that they are consistent with the trend in the solubility of Group 2 hydroxides.	
	Try droxides.	(2)
	(Total for Question = 16 marks)

It can be formed by burning magnesium in chlorine.		
$Mg(s) + Cl_2(g) \rightarrow MgCl_2(s)$ $\Delta S_{surroundings}^{\ominus} = +2152 \text{ J mol}^{-1} \text{ K}^{-1}$		
Remember to include a sign and units in your answers to the calculations in this question.		
(a) (i) The standard molar entropy at 298 K for 1 mol chlorine molecules, Cl_2 , is $+165 \text{J mol}^{-1} \text{K}^{-1}$. Use this, and appropriate values from your Data Booklet, to calculate the standard entropy change of the system, $\Delta S_{\text{system}}^{\ominus}$, for this reaction	. (2)	
*(ii) Explain fully why the sign for the standard entropy change of the system, $\Delta S^{\ominus}_{\rm system}$, is as you would expect.	(2)	
(b) Calculate the total entropy change, $\Delta S^{\ominus}_{\text{total}}$, in J mol ⁻¹ K ⁻¹ , for this reaction, giving your answer to three significant figures.	(2)	

This question is about magnesium chloride, MgCl₂.

(c)	Uso sta	e the standard entropy change of the surroundings, $\Delta S^{\ominus}_{\text{surroundings}}$, to calculate the ndard enthalpy change, ΔH^{\ominus} , in kJ mol ⁻¹ , for the reaction at 298 K.	(2)
(d)	is a 50.	1300 mol of magnesium chloride, prepared by burning magnesium in chlorine, added to 51.5 cm ³ of water. 0.0 cm^3 of 1.00 mol dm ⁻³ solution is formed, and the temperature rise, ΔT , 0.0 cm^3 cc.	
	(i)	Calculate the energy transferred in joules for this process using:	
		Energy transferred in joules = volume of solution \times 4.2 \times ΔT	(1)
	(ii)	Calculate the enthalpy change of solution, $\Delta H_{\rm solution}$ of magnesium chloride in kJ mol $^{-1}$.	(2)

*(iii) The enthalpy change of hydration of Mg ²⁺ (g) is -1920 kJ mol ⁻¹ .	
Use this, your value from (d)(ii), and the experimental lattice energy from your Data Booklet, to calculate the enthalpy change of hydration of $Cl^{-}(g)$.	(3)
$\frac{Mg^{2+}(g) \; + \; 2CI^{-}(g)}{I}$	
MgCl₂(s)	
$Mg^{2+}(aq) + 2Cl^{-}(aq)$ Answer	kJ mol ⁻
(iv) Draw a diagram to represent a hydrated chloride ion.	(1)
(v) Suggest why the addition of aphydrous magnesium chloride to water results	
 (v) Suggest why the addition of anhydrous magnesium chloride to water results in an increase in temperature and a decrease in volume. 	(2)
Temperature increases	
Volume decreases	

(Total for Question = 17 marks)

3 This question is about calcium chloride, CaCl ₂ .		
It can be formed by burning calcium in chlorine.		
Ca(s) + $Cl_2(g) \rightarrow CaCl_2(s)$ $\Delta S_{\text{surroundings}}^{\ominus} = +2670 \text{ J mol}^{-1} \text{ K}^{-1}$		
You must include a sign and units in your answers to the calculations in this question	1.	
(a) (i) The standard molar entropy at 298 K for 1 mole of chlorine molecules, Cl_2 , is $+165 \text{ J mol}^{-1} \text{ K}^{-1}$. Use this, and appropriate values from your Data Booklet, to calculate the standard entropy change, $\Delta S_{\text{system}}^{\ominus}$, for this reaction.	(2)	
*(ii) Explain fully why the sign for the standard entropy change of the system, $\Delta S_{\rm system}^{\ominus}$, is as you would expect.	(2)	
(b) Calculate the total entropy change, $\Delta S_{\text{total}}^{\ominus}$, in J mol ⁻¹ K ⁻¹ , for this reaction, giving your answer to three significant figures.	(2)	

(c)	Us sta	e the standard entropy change of the surroundings, $\Delta S^{\ominus}_{\text{surroundings}}$, to calculate the ndard enthalpy change, ΔH^{\ominus} , in kJ mol ⁻¹ , for the reaction at 298 K.	(2)
(d)		500 mol of calcium chloride, prepared by burning calcium in chlorine, is added 51.8 cm ³ of water.	
		0 cm 3 of a 1.00 mol dm $^{-3}$ solution is formed, and the temperature rise, ΔT , is 0°C.	
	(i)	Calculate the energy transferred, in joules, for this process using:	
		Energy transferred in joules = volume of solution formed \times 4.2 \times Δ T	(1)
	(ii)	Calculate the enthalpy change of solution, $\Delta H_{\rm solution}$, of calcium chloride in kJ mol $^{-1}$.	(2)

(Total for Question = 18 marks)	
Volume decreases	
Temperature increases	
(v) Suggest why the addition of anhydrous calcium chloride to water results in an increase in temperature and a decrease in volume.	(2)
(iv) Draw diagrams to represent hydrated calcium ions and hydrated chloride ions	(2)
Ca (g) + 2Cl (g) $CaCl_{2}(s)$ $CaCl_{2}(s)$ $Ca^{2+}(aq) + 2Cl^{-}(aq)$ Answer	kJ mol ⁻¹
$Ca^{2+}(g) + 2Cl^{-}(g)$	(3)
*(iii) The enthalpy change of hydration of Ca ²⁺ (g) is –1560 kJ mol ⁻¹ . Use this, your value from (d)(ii) and the experimental lattice energy from your Data Booklet, to calculate the standard enthalpy change of hydration of Cl ⁻ (g).	

4 The equation for the combustion of hydrogen is

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$$

- (a) Use the standard molar entropies on page 2 and page 25 of the data booklet to calculate the standard entropy change of the system ($\Delta S_{\text{system}}^{\ominus}$) for this reaction.
 - Note that the standard molar entropies of the elements are given **per atom** so that the standard molar entropy of oxygen, $S^{\ominus}[\frac{1}{2}O_3(g)] = +102.5 \text{ J mol}^{-1} \text{ K}^{-1}$.

(3)

(b) The standard enthalpy change for the combustion of hydrogen is −285.8 kJ mol⁻¹. Use this value to calculate the entropy change of the surroundings for the combustion of hydrogen at 298 K. Give your answer to **3** significant figures and include a sign and units.

(3)

	(Total for Question = 10 marks	s)
		(2)
	By considering both the thermodynamic stability and the kinetic inertness of a mixture of hydrogen and oxygen, explain why hydrogen does not react with oxygen unless ignited.	
		(2)
(c)	Use your answers to (a) and (b) to calculate the total entropy change $(\Delta S_{\text{total}}^{\ominus})$ for the combustion of 1 mol of hydrogen. Include a sign and units in your answer.	(2)
(c)	Use your answers to (a) and (b) to calculate the total entropy change (ΔS^{\ominus} .) for	